The CIA learned what the Soviets could and could not see on their radars

Tuesday, June 18th, 2024

Area 51 by Annie JacobsenAfter Gary Powers’ U-2 got shot down, Annie Jacobsen explains (in Area 51), the CIA and the Air Force were anxious to get its Mach-3 replacement flying:

At Lockheed, each Mach 3 aircraft was literally being hand forged, part by part, one airplane at a time. The production of the aircraft, according to Richard Bissell, “spawned its own industrial base. Special tools had to be developed, along with new paints, chemicals, wires, oils, engines, fuel, even special titanium screws. By the time Lockheed finished building the A-12, they themselves had developed and manufactured thirteen million different parts.” It was the titanium that first held everything up. Titanium was the only metal strong enough to handle the kind of heat the Mach 3 aircraft would have to endure: 500-to 600-degree temperatures on the fuselage’s skin and nearly 1,000 degrees in places close to the engines. This meant the titanium alloy had to be pure; nearly 95 percent of what Lockheed initially received had to be rejected. Titanium was also critically sensitive to the chemical chlorine, a fact Lockheed engineers did not realize at first. During the summer, when chlorine levels in the Burbank water system were elevated to fight algae, inside the Skunk Works, airplane pieces started to mysteriously corrode. Eventually, the problem was discovered, and the entire Skunk Works crew had to switch over to distilled water. Next it was discovered that titanium was also sensitive to cadmium, which was what most of Lockheed’s tools were plated with. Hundreds of toolboxes had to be reconfigured, thousands of tools tossed out. The next problem was power related. Wind-tunnel testing in Burbank was draining too much electricity off the local grid. If a reporter found out about the electricity drain, it could lead to unwanted questions. NASA offered Kelly Johnson an alternative wind-tunnel test facility up in Northern California, near the Mojave, which was where Lockheed engineers ended up—performing their tests late at night under cover of darkness. The complicated nature of all things Oxcart pushed the new spy plane further and further behind the schedule.

[…]

Russia was spending billions of rubles on surface-to-air missile technology and the CIA soon learned that the Oxcart’s new nemesis was a system called Tall King. Getting hard data on Tall King’s exact capabilities before the Oxcart went anywhere near it was now a top priority for the CIA.

[…]

In 1960, “there were many CIA officers who thought ELINT was a dirty word,” recalls Gene Poteat, the engineer in charge of Project Palladium, which originated with the CIA’s Office of Scientific Intelligence.

[…]

“We needed to know the sensitivity of Soviet radar receivers and the proficiency of its operators,” Poteat explains. With Khrushchev using Cuba as a military base in the Western Hemisphere, the CIA saw an opportunity. “When the Soviets moved into Cuba with their missiles and associated radar, we were presented with a golden opportunity to measure the system sensitivity of the SA-2 aircraft missile radar,” says Poteat.

[…]

Thornton “T.D.” Barnes was a CIA asset at an age when most men hadn’t graduated from college yet. Married at seventeen to his high-school sweetheart, Doris, Barnes became a self-taught electronics wizard, buying broken television sets, fixing them up, and reselling them for five times the amount. In doing so, he went from bitter poverty—raised on a Texas Panhandle ranch with no electricity or running water—to buying his new bride a dream home before he was old enough to vote. Barnes credited his mother for his becoming one of the CIA’s most important radar countermeasure experts. “My mom saw an article on radar in Life magazine when I was no more than nine or ten. She said I should write a school report on the subject and so I did. That’s when I got bit with the radar bug.”

At age seventeen, Barnes lied about his age to join the National Guard so he could go fight in Korea. He dreamed of one day being an Army officer. Two years later he was deployed to the 38th Parallel to defend the region alongside a British and a Turkish infantry company. It was in Korea that Barnes began his intelligence career at the bottom of the chain of command. “I was the guy who sat on the top of the hill and looked for enemy soldiers. If I saw ’em coming, it was my job to radio the information back to base,” Barnes recalls. He loved the Army. The things he learned there stayed with him all his life: “Never waste a moment. Shine your boots when you’re sitting on the pot. Always go to funerals. Look out for your men.” Once, in Korea, a wounded soldier was rushed onto the base. Barnes overheard that the man needed to be driven to the hospital, but because gas was scarce, all vehicles had to be signed out by a superior. With no superior around, Barnes worried the man might die if he didn’t get help fast, so he signed his superior’s name on the order. “I was willing to take the demerit,” Barnes explains. His actions caught the attention of the highest-ranking officer on the base, Major General Carl Jark, and later earned him a meritorious award. When the war was over General Jark pointed Barnes in the direction of radar and electronics. “He suggested I go to Fort Bliss and get myself an education there,” Barnes explains. So T.D. and Doris Barnes headed to Texas. There, Barnes’s whole world would change. And it didn’t take long for his exceptional talents to come to the attention of the CIA.

Barnes loved learning. At Fort Bliss, he attended classes for Nike Ajax and Nike Hercules missile school by day and classes at Texas Western University by night for the next fifty-four months. These were the missiles that had been developed a decade earlier by the Paperclip scientists, born originally of the German V-2 rocket. At Fort Bliss, Barnes read technical papers authored by former Nazi scientists. Sometimes the Paperclip scientists taught class. “No one really thought of them as former Nazis,” says Barnes. “They were the experts. They worked for us now and we learned from them.” By early 1960, Barnes was a bona fide missile expert. Sometimes, when a missile misfired over at the White Sands Missile Range, it was T.D. Barnes who was dispatched to disarm the missile sitting on the test stand. “I’d march up to the missile, take off the panel, and disconnect the wires from the igniter,” Barnes recalls. “When you are young, it doesn’t occur to you how dangerous something is.” Between the academics and the hands-on experience, Barnes developed an unusual aptitude in an esoteric field that the CIA was just getting involved in: ELINT. Which was how at the age of twenty-three, T. D. Barnes was recruited by the CIA to participate in a top secret game of chicken with the Russians that was part of Project Palladium. Although Barnes didn’t know it then, the work he was doing was for the electronic countermeasure systems that would later be installed on the A-12 Oxcart and on the ground at Area 51.

[…]

The plan was for the airplane to fly right up to the edge of Cuban airspace but not into it. Moments before the airplane crossed into Cuban airspace, the pilot would quickly turn around and head home. By then, the Russian radar experts working the Cuban radar sites would have turned on their systems to track the U.S. airplane. Russian MiG fighter jets would be sent aloft to respond. The job of Project Palladium was to gather the electronic intelligence being sent out by the radar stations and the MiGs.

[…]

“At the time, ECM [electronic countermeasure] and ECCM [electronic counter-countermeasure] technology were still new to both the plane and the missile. We’d transmit a Doppler signal from a radar simulator which told their MiG pilots that a missile had locked on them. When the Soviet pilots engaged their ECM against us, my job was to sit there and watch how our missile’s ECCM responded. If the Soviet signal jammed our missile and made it drift off target, I’d tweak my missile’s ECCM electronics to determine what would override a Soviet ECM signal.”

[…]

“Inside the airplane, we’d record the frequencies to be replayed back at Fort Bliss for training and design. Once we got what we wanted we hauled ass out of the area to avoid actual contact with Soviet planes.”

[…]

Back at Fort Bliss, Barnes and the others would interpret what NSA had captured from the Soviet/Cuban ECM transmissions that they had recorded during the flight. In listening to the decrypted Soviet responses to the antagonistic moves, the CIA learned what the Soviets could and could not see on their radars. This technology became a major component in further developing stealth technology and electronic countermeasures and was why Barnes was later placed by the CIA to work at Area 51.

Comments

  1. EGS says:

    Absolutely fascinating.

Leave a Reply